Times op-ed: What Is To Be Done? An answer to Dean Acheson’s famous quip

On Tuesday 2 December, the Times ran an op-ed by me you can see HERE. It got cut slightly for space. Below is the original version that makes a few other points.

I will use this as a start of a new series on what can be done to improve the system including policy, institutions, and management.

NB1. The article is not about the election or party politics. My suggested answer to Acheson is, I think, powerful partly because it is something that could be agreed upon, in various dimensions, across the political spectrum. I left the DfE in January partly because I wanted to have nothing to do with the election and this piece should not be seen as advocating ‘something Tories should say for the election’. I do not think any of the three leaders are interested in or could usefully pursue this goal – I am suggesting something for the future when they are all gone, and they could quite easily all be gone by summer 2016.

NB2. My view is not – ‘public bad, private good’. As I explained in The Hollow Men II, a much more accurate and interesting distinction is between a) large elements of state bureaucracies, dreadful NGOs like the CBI, and many large companies (that have many of the same HR and incentive problems as bureaucracies), where very similar types rise to power because the incentives encourage political skills rather than problem-solving skills, and b) start-ups, where entrepreneurs and technically trained problem-solvers can create organisations that operate extremely differently, move extremely fast, create huge value, and so on.

(For a great insight into start-up world I recommend two books. 1. Peter Thiel’s new book ‘Zero To One‘. 2. An older book telling the story of a mid-90s start-up that was embroiled in the Netscape/Microsoft battle and ended up selling itself to the much better organised Bill Gates – ‘High Stakes, No Prisoners‘ by Charles Ferguson. This blog, Creators and Rulers, by physicist Steve Hsu also summarises some crucial issues excellently.)

Some parts of government can work like start-ups but the rest of the system tries to smother them. For example, DARPA (originally ARPA) was set up as part of the US panic about Sputnik. It operates on very different principles from the rest of the Pentagon’s R&D system. Because it is organised differently, it has repeatedly produced revolutionary breakthroughs (e.g. the internet) despite a relatively tiny budget. But also note – DARPA has been around for decades and its operating principles are clear but nobody else has managed to create an equivalent (openly at least). Also note that despite its track record, D.C. vultures constantly circle trying to make it conform to the normal rules or otherwise clip its wings. (Another interesting case study would be the alternative paths taken by a) the US government developing computers with one genius mathematician, von Neumann, post-1945 (a lot of ‘start-up’ culture) and b) the UK government’s awful decisions in the same field with another genius mathematician, Turing, post-1945.)

When I talk about new and different institutions below, this is one of the things I mean. I will write a separate blog just on DARPA but I think there are two clear action points:

1. We should create a civilian version of DARPA aimed at high-risk/high-impact breakthroughs in areas like energy science and other fundamental areas such as quantum information and computing that clearly have world-changing potential. For it to work, it would have to operate outside all existing Whitehall HR rules, EU procurement rules and so on – otherwise it would be as dysfunctional as the rest of the system (defence procurement is in a much worse state than the DfE, hence, for example, billions spent on aircraft carriers that in classified war-games cannot be deployed to warzones). We could easily afford this if we could prioritise – UK politicians spend far more than DARPA’s budget on gimmicks every year – and it would provide huge value with cascading effects through universities and businesses.

2. The lessons of why and how it works – such as incentivising goals, not micromanaging methods – have general application that are useful when we think generally about Whitehall reform.

Finally, government institutions also operate to exclude from power scientists, mathematicians, and people from the start-up world – the Creators, in Hsu’s term. We need to think very hard about how to use their very rare and valuable skills as a counterweight to the inevitable psychological type that politics will always tend to promote.

Please leave comments, corrections etc below.

DC


 

What Is to Be Done?

There is growing and justified contempt for Westminster. Number Ten has become a tragi-comic press office with the prime minister acting as Über Pundit. Cameron, Miliband, and Clegg see only the news’s flickering shadows on their cave wall – they cannot see the real world behind them. As they watch floundering MPs, officials know they will stay in charge regardless of an election that won’t significantly change Britain’s trajectory.

Our institutions failed pre-1914, pre-1939, and with Europe. They are now failing to deal with a combination of debts, bad public services, security threats, and profound transitions in geopolitics, economics, and technology. They fail in crises because they are programmed to fail. The public knows we need to reorient national policy and reform these institutions. How?

First, we need a new goal. In 1962, Dean Acheson quipped that Britain had failed to find a post-imperial role. The romantic pursuit of ‘the special relationship’ and the deluded pursuit of a leading EU role have failed. This role should focus on making Britain the best country for education and science. Pericles described Athens as ‘the school of Greece’: we could be the school of the world because this role depends on thought and organisation, not size.

This would give us a central role in tackling humanity’s biggest problems and shaping the new institutions, displacing the EU and UN, that will emerge as the world makes painful transitions in coming decades. It would provide a focus for financial priorities and Whitehall’s urgent organisational surgery. It’s a goal that could mobilise very large efforts across political divisions as the pursuit of knowledge is an extremely powerful motive.

Second, we must train aspirant leaders very differently so they have basic quantitative skills and experience of managing complex projects. We should stop selecting leaders from a subset of Oxbridge egomaniacs with a humanities degree and a spell as spin doctor.

In 2012, Fields Medallist Tim Gowers sketched a ‘maths for presidents’ course to teach 16-18 year-olds crucial maths skills, including probability and statistics, that can help solve real problems. It starts next year. [NB. The DfE funded MEI to turn this blog into a real course.] A version should be developed for MPs and officials. (A similar ‘Physics for Presidents‘ course has been a smash hit at Berkeley.) Similarly, pioneering work by Philip Tetlock on ‘The Good Judgement Project‘ has shown that training can reduce common cognitive errors and can sharply improve the quality of political predictions, hitherto characterised by great self-confidence and constant failure.

New interdisciplinary degrees such as ‘World history and maths for presidents’ would improve on PPE but theory isn’t enough. If we want leaders to make good decisions amid huge complexity, and learn how to build great teams, then we should send them to learn from people who’ve proved they can do it. Instead of long summer holidays, embed aspirant leaders with Larry Page or James Dyson so they can experience successful leadership.

Third, because better training can only do so much, we must open political institutions to people and ideas from outside SW1.

A few people prove able repeatedly to solve hard problems in theoretical and practical fields, creating important new ideas and huge value. Whitehall and Westminster operate to exclude them from influence. Instead, they tend to promote hacks and apparatchiks and incentivise psychopathic narcissism and bureaucratic infighting skills – not the pursuit of the public interest.

How to open up the system? First, a Prime Minister should be able to appoint Secretaries of State from outside Parliament. [How? A quick and dirty solution would be: a) shove them in the Lords, b) give Lords ministers ‘rights of audience’ in the Commons, c) strengthen the Select Committee system.]

Second, the 150 year experiment with a permanent civil service should end and Whitehall must open to outsiders. The role of Permanent Secretary should go and ministers should appoint departmental chief executives so they are really responsible for policy and implementation. Expertise should be brought in as needed with no restrictions from the destructive civil service ‘human resources’ system that programmes government to fail. Mass collaborations are revolutionising science [cf. Michael Nielsen’s brilliant book]; they could revolutionise policy. Real openness would bring urgent focus to Whitehall’s disastrous lack of skills in basic functions such as budgeting, contracts, procurement, legal advice, and project management.

Third, Whitehall’s functions should be amputated. The Department for Education improved as Gove shrank it. Other departments would benefit from extreme focus, simplification, and firing thousands of overpaid people. If the bureaucracy ceases to be ‘permanent’, it can adapt quickly. Instead of obsessing on process, distorting targets, and micromanaging methods, it could shift to incentivising goals and decentralising methods.

Fourth, existing legal relationships with the EU and ECHR must change. They are incompatible with democratic and effective government

Fifth, Number Ten must be reoriented from ‘government by punditry’ to a focus on the operational planning and project management needed to convert priorities to reality over months and years.

Technological changes such as genetic engineering and machine intelligence are bringing revolution. It would be better to undertake it than undergo it.

 

 

Complexity, ‘fog and moonlight’, prediction, and politics III – von Neumann and economics as a science

The two previous blogs in this series were:

Part I HERE.

Part II HERE.

All page references unless otherwise stated are to my essay, HERE.

Since the financial crisis, there has been a great deal of media and Westminster discussion about why so few people predicted it and what the problems are with economics and financial theory.

Absent from most of this discussion is the history of the subject and its intellectual origins. Economics is clearly a vital area of prediction for people in politics. I therefore will explore some intellectual history to provide context for contemporary discussions about ‘what is wrong with economics and what should be done about it’.

*

It has often been argued that the ‘complexity’ of human behaviour renders precise mathematical treatment of economics impossible, or that the undoubted errors of modern economics in applying the tools of mathematical physics are evidence of the irredeemable hopelessness of the goal.

For example, Kant wrote in Critique of Judgement:

‘For it is quite certain that in terms of merely mechanical principles of nature we cannot even adequately become familiar with, much less explain, organized beings and how they are internally possible. So certain is this that we may boldly state that it is absurd for human beings even to attempt it, or to hope that perhaps some day another Newton might arise who would explain to us, in terms of natural laws unordered by any intention, how even a mere blade of grass is produced. Rather, we must absolutely deny that human beings have such insight.’

In the middle of the 20th Century, one of the great minds of the century turned to this question. John Von Neumann was one of the leading mathematicians of the 20th Century. He was also a major contributor to the mathematisation of quantum mechanics, created the field of ‘quantum logic’ (1936), worked as a consultant to the Manhattan Project and other wartime technological projects, and was one of the two most important creators of modern computer science and artificial intelligence (with Turing) which he developed partly for immediate problems he was working on (e.g. the hydrogen bomb and ICBMs) and partly to probe the general field of understanding complex nonlinear systems.  In an Endnote of my essay I discuss some of these things.

Von Neumann was regarded as an extraordinary phenomenon even by  the cleverest people in the world. The Nobel-winning physicist and mathematician Wigner said of von Neumann:

‘I have known a great many intelligent people in my life. I knew Planck, von Laue and Heisenberg. Paul Dirac was my brother in law; Leo Szilard and Edward Teller have been among my closest friends; and Albert Einstein was a good friend, too. But none of them had a mind as quick and acute as Jansci von Neumann. I have often remarked this in the presence of those men and no one ever disputed me… Perhaps the consciousness of animals is more shadowy than ours and perhaps their perceptions are always dreamlike. On the opposite side, whenever I talked with the sharpest intellect whom I have known – with von Neumann – I always had the impression that only he was fully awake, that I was halfway in a dream.’

Von Neumann also had a big impact on economics. During breaks from pressing wartime business, he wrote ‘Theory of Games and Economic Behaviour’ (TGEB) with Morgenstern. This practically created the field of ‘game theory’ which one sees so many references to now. TGEB was one of the most influential books ever written on economics. (The movie The Beautiful Mind gave a false impression of Nash’s contribution.) In the Introduction, his explanation of some foundational issues concerning economics, mathematics, and prediction is clearer for non-specialists than any other thing I have seen on the subject and cuts through a vast amount of contemporary discussion which fogs the issues.

This documentary on von Neumann is also interesting:

*

There are some snippets from pre-20th Century figures explaining concepts in terms recognisable through the prism of Game Theory. For example, Ampère wrote ‘Considerations sur la théorie mathématique du jeu’ in 1802 and credited Buffon’s 1777 essay on ‘moral arithmetic’ (Buffon figured out many elements that Darwin would later harmonise in his theory of evolution). Cournot discussed what would later be described as a specific example of a ‘Nash equilibrium’ viz duopoly in 1838.  The French mathematician Emile Borel also made contributions to early ideas.

However, Game Theory really was born with von Neumann. In December 1926, he presented the paper ‘Zur Theorie der Gesellschaftsspiele’ (On the Theory of Parlour Games, published in 1928, translated version here) while working on the Hilbert Programme [cf. Endnote on Computing] and quantum mechanics. The connection between the Hilbert Programme and the intellectual origins of Game Theory can perhaps first be traced in a 1912 lecture by one of the world’s leading mathematicians and founders of modern set theory, Zermelo, titled ‘On the Application of Set Theory to Chess’ which stated of its purpose:

‘… it is not dealing with the practical method for games, but rather is simply giving an answer to the following question: can the value of a particular feasible position in a game for one of the players be mathematically and objectively decided, or can it at least be defined without resorting to more subjective psychological concepts?’

He presented a theorem that chess is strictly determined: that is, either (i) white can force a win, or (ii) black can force a win, or (iii) both sides can force at least a draw. Which of these is the actual solution to chess remains unknown. (Cf. ‘Zermelo and the Early History of Game Theory’, by Schwalbe & Walker (1997), which argues that modern scholarship is full of errors about this paper. According to Leonard (2006), Zermelo’s paper was part of a general interest in the game of chess among intellectuals in the first third of the 20th century. Lasker (world chess champion 1897–1921) knew Zermelo and both were taught by Hilbert.)

Von Neumman later wrote:

‘[I]f the theory of Chess were really fully known there would be nothing left to play.  The theory would show which of the three possibilities … actually holds, and accordingly the play would be decided before it starts…  But our proof, which guarantees the validity of one (and only one) of these three alternatives, gives no practically usable method to determine the true one. This relative, human difficulty necessitates the use of those incomplete, heuristic methods of playing, which constitute ‘good’ Chess; and without it there would be no element of ‘struggle’ and ‘surprise’ in that game.’ (p.125)

Elsewhere, he said:

‘Chess is not a game. Chess is a well-defined computation. You may not be able to work out the answers, but in theory there must be a solution, a right procedure in any position. Now, real games are not like that at all. Real life is not like that. Real life consists of bluffing, of little tactics of deception, of asking yourself what is the other man going to think I mean to do. And that is what games are about in my theory.’

Von Neumman’s 1928 paper proved that there is a rational solution to every two-person zero-sum game. That is, in a rigorously defined game with precise payoffs, there is a mathematically rational strategy for both sides – an outcome which both parties cannot hope to improve upon. This introduced the concept of the minimax: choose a strategy that minimises the possible maximum loss.

Zero-sum games are those where the payoffs ‘sum’ to zero. For example, chess or Go are zero-sum games because the gain (+1) and the loss (-1) sum to zero; one person’s win is another’s loss. The famous Prisoners’ Dilemma is a non-zero-sum game because the payoffs do not sum to zero: it is possible for both players to make gains. In some games the payoffs to the players are symmetrical (e.g. Prisoners’ Dilemma); in others, the payoffs are asymmetrical (e.g. the Dictator or Ultimatum games). Sometimes the strategies can be completely stated without the need for probabilities (‘pure’ strategies); sometimes, probabilities have to be assigned for particular actions (‘mixed’ strategies).

While the optimal minimax strategy might be a ‘pure’ strategy, von Neumann showed it would often have to be a ‘mixed strategy’ and this means a spontaneous return of probability, even if the game itself does not involve probability.

‘Although … chance was eliminated from the games of strategy under consideration (by introducing expected values and eliminating ‘draws’), it has now made a spontaneous reappearance. Even if the rules of the game do not contain any elements of ‘hazard’ … in specifying the rules of behaviour for the players it becomes imperative to reconsider the element of ‘hazard’. The dependence on chance (the ‘statistical’ element) is such an intrinsic part of the game itself (if not of the world) that there is no need to introduce it artificially by way of the rules of the game itself: even if the formal rules contain no trace of it, it still will assert itself.’

In 1932, he gave a lecture titled ‘On Certain Equations of Economics and A Generalization of Brouwer’s Fixed-Point Theorem’. It was published in German in 1938 but not in English until 1945 when it was published as ‘A Model of General Economic Equilibrium’. This paper developed what is sometimes called von Neumann’s Expanding Economic Model and has been described as the most influential article in mathematical economics. It introduced the use of ‘fixed-point theorems’. (Brouwer’s ‘fixed point theorem’ in topology proved that, in crude terms, if you lay a map of the US on the ground anywhere in the US, one point on the map will lie precisely over the point it represents on the ground beneath.)

‘The mathematical proof is possible only by means of a generalisation of Brouwer’s Fix-Point Theorem, i.e. by the use of very fundamental topological facts… The connection with topology may be very surprising at first, but the author thinks that it is natural in problems of this kind. The immediate reason for this is the occurrence of a certain ‘minimum-maximum’ problem… It is closely related to another problem occurring in the theory of games.’

Von Neumann’s application of this topological proof to economics was very influential in post-war mathematical economics and in particular was used by Arrow and Debreu in their seminal 1954 paper on general equilibrium, perhaps the central paper in modern traditional economics.

*

In the late 1930’s, von Neumann, based at the IAS in Princeton to which Gödel and Einstein also fled to escape the Nazis, met up with the economist Oskar Morgenstern who was deeply dissatisfied with the state of economics. In 1940, von Neumann began his collaboration on games with Morgenstern, while working on war business including the Manhattan Project and computers, that became The Theory of Games and Economic Behavior (TGEB). By December 1942, he had finished his work on this though it was not published until 1944.

In the Introduction of TGEB, von Neumann explained the real problems in applying mathematics to economics and why Kant was wrong.

‘It is not that there exists any fundamental reason why mathematics should not be used in economics.  The arguments often heard that because of the human element, of the psychological factors etc., or because there is – allegedly – no measurement of important factors, mathematics will find no application, can all be dismissed as utterly mistaken.  Almost all these objections have been made, or might have been made, many centuries ago in fields where mathematics is now the chief instrument of analysis [e.g. physics in the 16th Century or chemistry and biology in the 18th]…

‘As to the lack of measurement of the most important factors, the example of the theory of heat is most instructive; before the development of the mathematical theory the possibilities of quantitative measurements were less favorable there than they are now in economics.  The precise measurements of the quantity and quality of heat (energy and temperature) were the outcome and not the antecedents of the mathematical theory…

‘The reason why mathematics has not been more successful in economics must be found elsewhere… To begin with, the economic problems were not formulated clearly and are often stated in such vague terms as to make mathematical treatment a priori appear hopeless because it is quite uncertain what the problems really are. There is no point using exact methods where there is no clarity in the concepts and issues to which they are applied. [Emphasis added] Consequently the initial task is to clarify the knowledge of the matter by further careful descriptive work. But even in those parts of economics where the descriptive problem has been handled more satisfactorily, mathematical tools have seldom been used appropriately. They were either inadequately handled … or they led to mere translations from a literary form of expression into symbols…

‘Next, the empirical background of economic science is definitely inadequate. Our knowledge of the relevant facts of economics is incomparably smaller than that commanded in physics at the time when mathematization of that subject was achieved.  Indeed, the decisive break which came in physics in the seventeenth century … was possible only because of previous developments in astronomy. It was backed by several millennia of systematic, scientific, astronomical observation, culminating in an observer of unparalleled calibre, Tycho de Brahe. Nothing of this sort has occurred in economics. It would have been absurd in physics to expect Kepler and Newton without Tycho – and there is no reason to hope for an easier development in economics…

‘Very frequently the proofs [in economics] are lacking because a mathematical treatment has been attempted in fields which are so vast and so complicated that for a long time to come – until much more empirical knowledge is acquired – there is hardly any reason at all to expect progress more mathematico. The fact that these fields have been attacked in this way … indicates how much the attendant difficulties are being underestimated. They are enormous and we are now in no way equipped for them.

‘[We will need] changes in mathematical technique – in fact, in mathematics itself…  It must not be forgotten that these changes may be very considerable. The decisive phase of the application of mathematics to physics – Newton’s creation of a rational discipline of mechanics – brought about, and can hardly be separated from, the discovery of the infinitesimal calculus…

‘The importance of the social phenomena, the wealth and multiplicity of their manifestations, and the complexity of their structure, are at least equal to those in physics.  It is therefore to be expected – or feared – that mathematical discoveries of a stature comparable to that of calculus will be needed in order to produce decisive success in this field… A fortiori, it is unlikely that a mere repetition of the tricks which served us so well in physics will do for the social phenomena too.  The probability is very slim indeed, since … we encounter in our discussions some mathematical problems which are quite different from those which occur in physical science.’

Von Neumann therefore exhorted economists to humility and the task of ‘careful, patient description’, a ‘task of vast proportions’. He stressed that economics could not attack the ‘big’ questions – much more modesty is needed to establish an exact theory for very simple problems, and build on those foundations.

‘The everyday work of the research physicist is … concerned with special problems which are “mature”… Unifications of fields which were formerly divided and far apart may alternate with this type of work. However, such fortunate occurrences are rare and happen only after each field has been thoroughly explored. Considering the fact that economics is much more difficult, much less understood, and undoubtedly in a much earlier stage of its evolution as a science than physics, one should clearly not expect more than a development of the above type in economics either…

‘The great progress in every science came when, in the study of problems which were modest as compared with ultimate aims, methods were developed which could be extended further and further. The free fall is a very trivial physical example, but it was the study of this exceedingly simple fact and its comparison with astronomical material which brought forth mechanics. It seems to us that the same standard of modesty should be applied in economics… The sound procedure is to obtain first utmost precision and mastery in a limited field, and then to proceed to another, somewhat wider one, and so on.’

Von Neumann therefore aims in TGEB at ‘the behavior of the individual and the simplest forms of exchange’ with the hope that this can be extended to more complex situations.

‘Economists frequently point to much larger, more ‘burning’ questions…  The experience of … physics indicates that this impatience merely delays progress, including that of the treatment of the ‘burning’ questions. There is no reason to assume the existence of shortcuts…

‘It is a well-known phenomenon in many branches of the exact and physical sciences that very great numbers are often easier to handle than those of medium size. An almost exact theory of a gas, containing about 1025 freely moving particles, is incomparably easier than that of the solar system, made up of 9 major bodies… This is … due to the excellent possibility of applying the laws of statistics and probabilities in the first case.

‘This analogy, however, is far from perfect for our problem. The theory of mechanics for 2,3,4,… bodies is well known, and in its general theoretical …. form is the foundation of the statistical theory for great numbers. For the social exchange economy – i.e. for the equivalent ‘games of strategy’ – the theory of 2,3,4… participants was heretofore lacking. It is this need that … our subsequent investigations will endeavor to satisfy. In other words, only after the theory for moderate numbers of participants has been satisfactorily developed will it be possible to decide whether extremely great numbers of participants simplify the situation.’

[This last bit has changed slightly as I forgot to include a few things.]

While some of von Neumann’s ideas were extremely influential on economics, his general warning here about the right approach to the use of mathematics was not widely heeded.

Most economists initially ignored von Neumann’s ideas.  Martin Shubik, a Princeton mathematician, recounted the scene he found:

‘The contrast of attitudes between the economics department and mathematics department was stamped on my mind… The former projected an atmosphere of dull-business-as-usual conservatism… The latter was electric with ideas… When von Neumann gave his seminar on his growth model, with a few exceptions, the serried ranks of Princeton economists could scarce forebear to yawn.’

However, a small but influential number, including mathematicians at the RAND Corporation (the first recognisable modern ‘think tank’) led by John Williams, applied it to nuclear strategy as well as economics. For example, Albert Wohlstetter published his Selection and Use of Strategic Air Bases (RAND, R-266, sometimes referred to as The Basing Study) in 1954. Williams persuaded the RAND Board and the infamous SAC General Curtis LeMay to develop a social science division at RAND that could include economists and psychologists to explore the practical potential of Game Theory further. He also hired von Neumann as a consultant; when the latter said he was too busy, Williams told him he only wanted the time it took von Neumann to shave in the morning. (Kubrick’s Dr Strangelove satirised RAND’s use of game theory.)

In the 1990’s, the movie A Beautiful Mind brought John Nash into pop culture, giving the misleading impression that he was the principle developer of Game Theory. Nash’s fame rests principally on work he did in 1950-1 that became known as ‘the Nash Equilibrium’. In Non-Cooperative Games (1950), he wrote:

‘[TGEB] contains a theory of n-person games of a type which we would call cooperative. This theory is based on an analysis of the interrelationships of the various coalitions which can be formed by the players of the game. Our theory, in contradistinction, is based on the absence of coalitions in that it is assumed each participant acts independently, without collaboration or communication with any of the others… [I have proved] that a finite non-cooperative game always has at least one equilibrium point.’

Von Neumann remarked of Nash’s results, ‘That’s trivial you know. It’s just a fixed point theorem.’ Nash himself said that von Neumann was a ‘European gentleman’ but was not impressed by his results.

In 1949-50, Merrill Flood, another RAND researcher, began experimenting with staff at RAND (and his own children) playing various games. Nash’s results prompted Flood to create what became known as the ‘Prisoners’ Dilemma’ game, the most famous and studied game in Game Theory. It was initially known as ‘a non-cooperative pair’ and the name ‘Prisoners’ Dilemma’ was given it by Tucker later in 1950 when he had to think of a way of explaining the concept to his psychology class at Stanford and hit on an anecdote putting the payoff matrix in the form of two prisoners in separate cells considering the pros and cons of ratting on each other.

The game was discussed and played at RAND without publishing. Flood wrote up the results in 1952 as an internal RAND memo accompanied by the real-time comments of the players. In 1958, Flood published the results formally (Some Experimental Games). Flood concluded that ‘there was no tendency to seek as the final solution … the Nash equilibrium point.’ Prisoners’ Dilemma has been called ‘the E. coli of social psychology’ by Axelrod, so popular has it become in so many different fields. Many studies of Iterated Prisoners’ Dilemma games have shown that generally neither human nor evolved genetic algorithm players converge on the Nash equilibrium but choose to cooperate far more than Nash’s theory predicts.

Section 7 of my essay discusses some recent breakthroughs, particularly the paper by Press & Dyson. This is also a good example of how mathematicians can invade fields. Dyson’s professional fields are maths and physics. He was persuaded to look at the Prisoners’ Dilemma. He very quickly saw that there was a previously unseen class of strategies that has opened up a whole new field for exploration. This article HERE is a good summary of recent developments.

Von Neumann’s brief forays into economics were very much a minor sideline for him but there is no doubt of his influence. Despite von Neumann’s reservations about neoclassical economics, Paul Samuelson admitted that, ‘He darted briefly into our domain, and it has never been the same since.’

In 1987, the Santa Fe Institute, founded by Gell Mann and others, organised a ten day meeting to discuss economics. On one side, they invited leading economists such as Kenneth Arrow and Larry Summers; on the other side, they invited physicists, biologists, and computer scientists, such as Nobel-winning Philip Anderson and John Holland (inventor of genetic algorithms). When the economists explained their assumptions, Phil Anderson said to them, ‘You guys really believe that?

One physicist later described the meeting as like visiting Cuba – the cars are all from the 1950’s so on one hand you admire them for keeping them going, but on the other hand they are old technology; similarly the economists were ingeniously using 19th Century maths and physics on very out-of-date models. The physicists were shocked at how the economists were content with simplifying assumptions that were obviously contradicted by reality, and they were surprised at the way the economists seemed unconcerned about how poor their predictions were.

Twenty-seven years later, this problem is more acute. Some economists are listening to the physicists about fundamental problems with the field. Some are angrily rejecting the physicists’ incursions into their field.

Von Neumann explained the scientifically accurate approach to economics and mathematics. [Inserted later. I mean – the first part of his comments above that discusses maths, prediction, models, and economics and physics. As far as I know, nobody seriously disputes these comments – i.e. that Kant and the general argument that ‘maths cannot make inroads into economics’ are wrong. The later comments about building up economic theories from theories of 2, 3, 4 agents etc is a separate topic. See comments.] In other blogs in this series I will explore some of the history of economic thinking as part of a description of the problem for politicians and other decision-makers who need to make predictions.

Please leave corrections and comments below.

 

‘Standin’ by the window, where the light is strong’: de-extinction, machine intelligence, the search for extra-solar life, autonomous drone swarms bombing Parliament, genetics & IQ, science & politics, and much more @ SciFoo 2014

‘SciFoo’ 8-10 August 2014, the Googleplex, Silicon Valley, California.

On Friday 8 August, I woke up in Big Sur (the coast of Northern California), looked out over the waves breaking on the wild empty coastline, munched a delicious Mexican breakfast at Deetjen’s, then drove north on Highway 1 towards Palo Alto where a few hours later I found myself looking through the windows of Google’s HQ at a glittering sunset in Silicon Valley.

I was going to ‘SciFoo’. SciFoo is a weekend science conference. It is hosted by Larry Page at Google’s HQ in Silicon Valley and organised by various people including the brilliant Timo Hannay from Digital Science.

I was invited because of my essay that became public last year (cf. HERE). Of the 200+ people, I was probably the only one who made zero positive contribution to the fascinating weekend and therefore wasted a place, so although it was a fantastic experience for me the organisers should not invite me back and I feel guilty about the person who could not go because I was there. At least I can let others know about some of the things discussed… (Although it was theoretically ‘on the record unless stated otherwise’, I could tell that many scientists were not thinking about this and so I have left out some things that I think they would not want attributed. Given they were not experienced politicians being interviewed but scientists at a scientific conference, I’m erring on the side of caution, particularly given the subjects discussed.)

It was very interesting to see many of the people whose work I mentioned in my essay and watch them interacting with each other – intellectually and psychologically / physically.

I will describe some of the things that struck me though, because there are about 7-10 sessions going on simultaneously, this is only a small snapshot.

In my essay, I discuss some of the background to many of these subjects so I will put references [in square brackets] so people can refer to it if they want.

Please note that below I am reporting what I think others were saying – unless it is clear, I am not giving my own views. On technical issues, I do not have my ‘own’ views – I do not have relevant skills. All I can do is judge where consensus lies and how strong it is. Many important issues involve asking at least 1) is there a strong scientific consensus on X among physical scientists with hard quantitative data to support their ideas (uber-example, the Standard Model of particle physics), b) what are the non-science issues, such as ‘what will it cost, who pays/suffers and why?’ On A, I can only try to judge what technically skilled people think. B is a different matter.

Whether you were there or not, please leave corrections / additions / questions in the comments box. Apologies for errors…

In a nutshell, a few likely scenarios / ideas, without spelling out caveats… 1) Extinct species are soon going to be brought back to life and the same technology will be used to modify existing species to help prevent them going extinct. 2) CRISPR  – a new gene editing technology – will be used to cure diseases and ‘enhance’ human performance but may also enable garage bio-hackers to make other species extinct. 3) With the launch of satellites in 2017/18, we may find signs of life by 2020 among the ~1011 exoplanets we now know exist just in our own galaxy though it will probably take 20-30 years, but the search will also soon get crowdsourced in a way schools can join in. 4) There is a reasonable chance we will have found many of the genes for IQ within a decade via BGI’s project, and the rich may use this information for embryo selection. 5) ‘Artificial neural networks’ are already outperforming humans on various pattern-recognition problems and will continue to advance rapidly. 6) Automation will push issues like a negative income tax onto the political agenda as millions lose their jobs to automation. 7) Autonomous drones will be used for assassinations in Europe and America shortly. 8) Read Neil Gershenfeld’s book ‘FAB’ if you haven’t and are interested in science education / 3D printing / computer science (or at least watch his TED talks). 9) Scientists are desperate to influence policy and politics but do not know how.

Biological engineering / computational biology / synthetic biology [Section 4]

George Church (Harvard), a world-leading biologist, spoke at a few sessions and his team’s research interests were much discussed.  (Don’t assume he said any specific thing below.)

The falling cost of DNA sequencing continues to spur all sorts of advances. It has fallen from a billion dollars per genome a decade ago to less than a thousand dollars now (a million-fold improvement), and the Pentagon is planning on it reaching $100 soon. We can also sequence cancer cells to track their evolution in the body.

CRISPR. CRISPR is a new (2012) and very hot technology that is a sort of ‘cut and paste’ gene editing tool. It allows much more precise and effective engineering of genomes. Labs across America are rushing to apply it to all sorts of problems. In March this year, it was used to correct faulty genes in mice and cure them of a liver condition. It plays a major part in many of the biological issues sketched below.

‘De-extinction’ (bringing extinct species back to life). People are now planning the practical steps for de-extinction to the extent that they are scoping out land in Siberia where woolly mammoths will roam. As well as creating whole organisms, they will also grow organs modified by particular genes to test what specific genes and combinations do. This is no longer sci-fi – it is being planned and is likely to happen. The buffalo population was recently re-built (Google serves buffalo burgers in its amazing kitchens) from a tiny population to hundreds of thousands and there seems no reason to think it is impossible to build a significant population from scratch.

What does this mean? You take the DNA from an animal, say a woolly mammoth buried in the ground, sequence it, then use the digitised genome to create an embryo and either grow it in a similar animal (e.g. elephant for a mammoth) or in an artificial womb. (I missed the bit explaining the rationale for some of the proposed projects but, apart from the scientific reasons, one rationale for the mammoth was described as a conservation effort to preserve the frozen tundra and prevent massive amounts of greenhouse gases being released from beneath it.)

There are also possibilities of using this technology for conservation. For example, one could re-engineer the Asian elephant so that it could survive in less hospitable climates (e.g. modify the genes that produce haemoglobin so it is viable in colder places).

Now that we have sequenced the genome for Neanderthals (and learned that humans interbred with them, so you have traces of their DNA – unless you’re an indigenous sub-Saharan African), there is no known physical reason why we could not bring a Neanderthal back to life once the technology has been refined on other animals. This obviously raises many ethical issues – e.g. if we did it, they would have to be given the same legal rights as us (one distinguished person said that if there were one in the room with us we would not notice, contra the pictures often used to illustrate them). It is assumed by many that this will happen (nobody questioned the assumption) – just as it seemed to be generally assumed that human cloning will happen – though probably not in a western country but somewhere with fewer legal restrictions, after the basic technologies have been refined. (The Harvard team gets emails from women volunteering to be the Neanderthal’s surrogate mum.)

‘Biohacking’. Biohacking is advancing faster than Moore’s Law. CRISPR editing will allow us to enhance ourselves. E.g. Tibetans have evolved much more efficient systems for coping with high altitude, and some Africans have much stronger bones than the rest of us (see below). Will we reengineer ourselves to obtain these advantages? CRISPR obviously also empowers all sorts of malevolent actors too – cf. this very recent paper (by Church et al). It may soon be possible for people in their garages to edit genomes and accidentally or deliberately drive species to extinction as well as attempt to release deadly pathogens. I could not understand why people were not more worried about this – I hope I was missing a lot. (Some had the attitude that ‘nature already does bio-terrorism’ so we should relax. I did not find this comforting and I’m sure I am in the majority so for anybody influential reading this I would strongly advise you not to use this argument in public advocacy or it is likely to accelerate calls for your labs to be shut down.)

‘Junk’. There is more and more analysis of what used to be called ‘junk DNA’. It is now clear that far from being ‘junk’ much of this has functions we do not understand. This connects to the issue that although we sequenced the human genome over a decade ago, the quality of the ‘reference’ version is not great and (it sounded like from the discussions) it needs upgrading.

‘Push button’ cheap DNA sequencers are around the corner. Might such devices become as ubiquitous as desktop printers? Why doesn’t someone create a ‘gene web browser’ that can cope with all the different data formats for genomes?

Privacy. There was a lot of talk about ‘do you want your genome on the web?’. I asked a quick informal pop quiz (someone else’s idea): there was unanimity that ‘I’d much rather my genome was on the web than my browsing history’. [UPDATE: n<10 and perhaps they were tongue in cheek!? One scientist pointed out in a session that when he informed his insurance company, after sequencing his own genome, that he had a very high risk of getting colon cancer, they raised his premiums. There are all sorts of reasons one would want to control genomic information and I was being a bit facetious.]

In many ways, computational biology and synthetic biology have that revolutionary feeling of the PC revolution in the 1970s – huge energy, massive potential for people without big resources to make big contributions, the young crowding in, the feeling of dramatic improvements imminent. Will this all seem ‘too risky’? It’s hard to know how the public will respond to risk. We put up with predictable annual carnage from car accidents but freak out over trivia. We ignore millions of deaths in the Congo but freak out over a handful in Israel/Gaza. My feeling is some of the scientists are too blasé about how the public will react to the risks, but I was wrong about how much fear there would be about the news that scientists recently deliberately engineered a much more dangerous version of an animal flu.

AI / machine learning / neuroscience [Section 5].

Artificial neural networks (NNs), now often referred to as ‘deep learning’, were first created 50 years ago but languished for a while when progress slowed. The field is now hot again. (Last year Google bought some companies leading the field, and a company, Boston Dynamics, that has had a long-term collaboration with DARPA.)

Jurgen Schmidhuber explained progress and how NNs have recently approached or surpassed human performance in various fields. E.g. recently NNs have surpassed human performance in recognising traffic signals (0.56% error rate for the best NN versus 1.16% for humans). Progress in all sorts of pattern recognition problems is clearly going to continue rapidly. E.g. NNs are now being used to automate a) the analysis of scans for cancer cells and b) the labelling of scans of human brains – so artificial neural networks are now scanning and labelling natural neural networks.

Steve Hsu has blogged about this session here:

http://infoproc.blogspot.co.uk/2014/08/neural-networks-and-deep-learning.html?m=1

Michael Nielsen is publishing an education project online for people to teach themselves the basics of neural networks. It is brilliant and I would strongly advise teachers reading this blog to consider introducing it into their schools and doing the course with the pupils.

http://neuralnetworksanddeeplearning.com

Neil Gershenfeld (MIT) gave a couple of presentations. One was on developments in computer science connecting: non-‘von Neumann architecture’, programmable matter, 3D printing, ‘the internet of things’ etc. [Cf. Section 3.] NB. IBM announced this month substantial progress in their quest for a new computer architecture that is ‘non-Von Neumann’: cf. this –

http://venturebeat.com/2014/08/07/ibms-synapse-marshals-the-power-of-the-human-brain-in-a-computer/view-all/

Another was on the idea of an ‘interspecies internet’. We now know many species can recognise each other, think, and communicate much better than we realised. He showed bonobos playing music with Peter Gabriel and dolphins communicating. He and others are plugging them into the internet. Some are doing this to help the general goal of figuring out how we might communicate with intelligent aliens – or how they might communicate with us.

(Gershenfeld’s book FAB led me to push 3D printing into the new National Curriculum and I would urge school science teachers to watch his TED talks and read this book. [INSERTED LATER: Some people have asked about this point. I (I thought obviously) did not mean I wrote the NC document. I meant – I pushed the subject into the discussions with the committees/drafters who wrote the NC. Experts in the field agreed it belonged. When it came out, this was not controversial. We also funded pilots with 3D printers so schools could get good advice about how to teach the subject well.] His point about 3D printers restoring the connection between thinking and making – lost post-Renaissance – is of great importance and could help end the foolishly entrenched ‘knowledge’ vs ‘skills’ and academic vs vocational trench wars. Gove actually gave a speech about this not long before he was moved and as far as I could tell it got less coverage than any speech he ever gave, thus proving the cliché about speeches on ‘skills’.)

There were a few presentations about ‘computational neuroscience’. I could not understand anything much as they were too technical. It was clear that there is deep concern among EU neuroscientists about the EU’s  huge funding for Henry Markram’s Human Brain Project. One leading neuroscientist said to me that the whole project is misguided as it does not have clear focused goals and the ‘overhype’ will lead to public anger in a few years. Apparently, the EU is reconsidering the project and its goals. I have no idea about the merits of these arguments. I have a general prejudice that, outside special circumstances, experience suggests that it is better to put funding into many pots and see what works, as DARPA does.

There are all sorts of crossovers between: AI / neuroscience / big data / NNs / algorithmic pattern recognition in other fields.

Peter Norvig, a leader in machine intelligence, said that he is more worried about the imminent social implications of continued advances making millions unemployed than he is about a sudden ‘Terminator / SKYNET’ scenario of a general purpose AI bootstrapping itself to greater than human intelligence and exterminating us all. Let’s hope so. It is obvious that this field is going to keep pushing boundaries – in open, commercial, and classified projects – so we are essentially going to be hoping for the best as we make more and more advances in AI. The idea of a ‘negative income tax’ – or some other form of essentially paying people X just to live – seems bound to return to the agenda. I think it could be a way around all sorts of welfare arguments. The main obstacle, it seems to me, is that people won’t accept paying for it if they think uncontrolled immigration will continue as it is now.

Space [Section 2]

There was great interest in various space projects and some senior people from NASA. There is much sadness at how NASA, despite many great people, has become a normal government institution – ie. caught in DC politics, very bureaucratic, and dysfunctional in various ways. On the other hand, many private ventures are now growing. E.g. Elon Musk is lowering the $/kg of getting material into orbit and planning a non-government Mars mission. As I said in my essay, really opening up space requires a space economy – not just pure science and research (such as putting telescopes on the far side of the moon, which we obviously should do). Columbus opened up America – not the Vikings.

There is another obvious motive. As Carl Sagan said, if the dinosaurs had had a space programme, they’d still be here. In the long-term we either develop tools for dealing with asteroids or we will be destroyed. We know this for sure. I think I heard that NASA is planning to park a small asteroid close to the moon around 2020 but I may have misheard / misunderstood.

Mario Livio led a great session on the search for life on exoplanets. The galaxy has ~1011 stars and there is ~1 planet on average per star. There are ~1011 galaxies, so a Fermi estimate is there are ~1022 planets – 10 billion trillion planets – in the observable universe (this number is roughly 1,000 times bigger than the number you get in the fable of putting a grain of rice on the first square of a chessboard and doubling on each subsequent square). Many of them are in the ‘habitable zone’ around stars.

In 2017/18, there are two satellites launching that will be able to do spectroscopy on exoplanets – i.e. examine their atmospheres and detect things like oxygen and water. ‘If we get lucky’, these satellites will find ‘bio-signatures’ of life. If they find life having looked at only a few planets, then it would mean that life is very common. ‘More likely’ is it will take 20-30 years and a new generation of space-based telescopes to find life. If planets are found with likely biosignatures, then it would make sense to turn SETI’s instruments towards them to see if they find anything. (However, we are already phasing out the use of radio waves for various communications – perhaps the use of radio waves is only a short window in the lifetime of a civilisation.) There are complex Bayesian arguments about what we might infer about our own likely future given various discoveries but I won’t go into those now. (E.g. if we find life is common but no traces of intelligent life, does this mean a) the evolution of complex life is not a common development from simple life; b) intelligent life is also common but it destroys itself; c) they’re hiding, etc.)

A very impressive (and helpful towards the ignorant like me) young scientist working on exoplanets called Oliver Guyon demonstrated a fascinating project to crowdsource the search for exoplanets by building a global network of automated cameras – PANOPTES (www.projectpanoptes.org). His team has built a simple system that can find exoplanets using normal digital cameras costing less than $1,000. They sit in a box connected to a 12V power supply, automatically take pictures of the night sky every few seconds, then email the data to the cloud. There, the data is aggregated and algorithms search for exoplanets. These units are cheap (can’t remember what he said but I think <$5,000). Everything is open-source, open-hardware. They will start shipping later this year and will make a brilliant school science project. Guyon has made the project with schools in mind so that assembling and operating the units will not require professional level skills. They are also exploring the next move to connect smartphone cameras.

Building the >15m diameter space telescopes we need to search for life seems to me an obvious priority for scientific budgets –  it is one of the handful of the most profound questions facing us.

There was an interesting cross-over discussion about ‘space and genetics’ in which people discussed various ways in which space exploration would encourage / require genetic modification. E.g.1 some sort of rocket fuel has recently been discovered to exist in large quantities on Mars. This is very handy but the substance is toxic. It might therefore make sense to modify humans going to live on Mars to be resistant. E.g.2 Space travel weakens bones. It has been discovered that mutations in the human population can improve bone strength by 8 standard deviations. This is a massive improvement – for comparison, 8 SDs in IQ covers people from severely mentally disabled to Nobel-winners. This was discovered by a team of scientists in Africa who noticed that people in a local tribe who got hit by cars did not suffer broken bones, so they sequenced the locals’ genomes. (Someone said there have already been successful clinical trials testing this discovery in a real drug to deal with osteoporosis.) E.g.3 Engineering E. Coli shows that just four mutations can improve resistance to radiation by ?1,000 times (can’t read my note).

Craig Venter and others are thinking about long-term projects to send ‘von Neumman-bots’ (self-replicating space drones) across the universe containing machines that could create biological life once they arrive somewhere interesting, thus avoiding the difficult problems of keeping humans alive for thousands of years on spaceships. (Nobel-winning physicist Gerard t’ Hooft explains the basic principles of this in his book Playing with planets.)

This paper (August 2014) summarises issues in the search for life:

http://www.pnas.org/content/early/2014/08/01/1304213111.full.pdf

Finding the genes for IQ and engineering possibilities [Section 5].

When my essay came out last year, there was a lot of mistaken reporting that encouraged many in the education world to grab the wrong end of the stick about IQ, though the BBC documentary about the controversy (cf. below) was excellent and a big step forward. It remains the case that very few people realise that in the last couple of years direct examination of DNA has now vindicated the consistent numbers on IQ heritability from decades of twin/adoption studies.

The rough heritability numbers for IQ are no longer in doubt among physical scientists who study this field: it is roughly 50% heritable at age ~18-20 and this number rises towards 70-80% for older adults. This is important because IQ is such a good predictor of the future – it is a better predictor than social class. E.g. The long-term Study of Mathematically Precocious Youth, which follows what has happened to children with 1:10,000 ability, shows among many things that a) a simple ‘noisy’ test administered at age 12-13 can make amazingly accurate predictions about their future, and b) achievements such as scientific breakthroughs correlate strongly with IQ. (If people looked at the data from SMPY, then I think some of the heat and noise in the debate  would fade but it is a sad fact that approximately zero senior powerful people in the English education world had even heard of this study before the furore over Plomin last year.)

Further, the environmental effects that are important are not the things that people assume. If you test the IQ of an adopted child in adulthood and the parents who adopted it, you find approximately zero correlation – all those anguished parenting discussions had approximately no measurable impact on IQ. (This does not mean that ‘parenting doesn’t matter’ – parents can transfer narrow skills such as playing the violin.) In the technical language, the environmental effects that are important are ‘non-shared’ environmental effects – i.e. they are things that two identical twins do not experience in the same way. We do not know what they are. It is reasonable to think that they are effectively random tiny events with nonlinear effects that we may never be able to track in detail – cf. this paper for a discussion of this issue in the context of epidemiology: http://ije.oxfordjournals.org/content/40/3/537.full.pdf+html

There remains widespread confusion on this subject among social scientists, education researchers, and the worlds of politics and the media where people were told misleading things in the 1980s and 1990s and do not realise that the debates have been transformed. To be fair, however, it was clear from this weekend that even many biologists do not know about new developments in this field so it is not surprising that political journalists and education researchers do not.

(An example of confusion in the political/media world… In my essay, I used the technical term ‘heritable’ which is a population statistic – not a statement about an individual. I also predicted that media coverage would confuse the subject (e.g. by saying things like ‘70% of your IQ comes from genes’). Sure enough some journalists claimed I said the opposite of what I actually said then they quoted scientists attacking me for making a mistake that not only did I not make but which I actually warned about. Possibly the most confused sentence of all those in the media about my essay was the line ‘wealth is more heritable than genes’, which was in Polly Toynbee’s column and accompanying headline in the Guardian. This sentence is a nonsense sentence as it completely mangles the meaning of the term ‘heritable’. Much prominent commentary from politicians and sociologists/economists on ‘social mobility’ is gibberish because of mistaken assumptions about genes and environment. The Endnote in my essay has links to work by Plomin, Hsu et al that explains it all properly. This interview with Plomin is excellent: http://www.spectator.co.uk/features/8970941/sorry-but-intelligence-really-is-in-the-genes/. This recent BBC radio programme is excellent and summarises the complex issues well: http://www.bbc.co.uk/programmes/b042q944/episodes/guide)

I had a fascinating discussion/tutorial at SciFoo with Steve Hsu. Steve Hsu is a professor of theoretical physics (and successful entrepreneur) with a long interest in IQ (he also runs a brilliant blog that will keep you up to speed on all sorts). He now works part time on the BGI project in China to discover the genes responsible for IQ.

IQ is very similar to height from the perspective of behavioural genetics. Height has the advantage that it is obviously easier to measure than IQ but it has roughly the same heritability. Large scale GWAS are already identifying some of the genes responsible for height. Hsu recently watched a talk by Fields Medallist Terry Tao and realised that a branch of maths could be used to examine the question – how many genomes do we need to scan to identify a substantial number of the genes for IQ? His answer: ‘roughly 10k moderately rare causal variants of mostly negative effect are responsible for normal population variation’ and finding them will require sequencing roughly a million genomes. The falling cost of sequencing DNA means that this is within reach. ‘At the time of this writing SNP genotyping costs are below $50 USD per individual, meaning that a single super-wealthy benefactor could independently fund a crash program for less than $100 million’ (Hsu).

The BGI project to find these genes has hit some snags recently (e.g. a US lawsuit between the two biggest suppliers of gene sequencing machines). However, it is now expected to start again soon. Hsu thinks that within a decade we could find many of the genes responsible for IQ. He has just put his fascinating paper on this subject on his blog (there is also a Q&A on p.27 that will be very useful for journalists):

http://infoproc.blogspot.co.uk/2014/08/genetic-architecture-of-intelligence.html

Just discovering a substantial fraction of the genes would be momentous in itself but there is more. It is already the case that farmers use genomes to make predictions about cows’ properties and behaviour (‘genotype to phenotype’ predictions). It is already the case that rich people could use in vitro fertilisation to select the egg which they think will be most advantageous, because they can sequence genomes of multiple eggs and examine each one to look for problems then pick the one they prefer. Once we identify a substantial number of IQ genes, there is no obvious reason why rich people will not select the egg that has the highest prediction for IQ. 

This clearly raises many big questions. If the poor cannot do the same, then the rich could quickly embed advantages and society could become not only more unequal but also based on biological classes. One response is that if this sort of thing does become possible, then a national health system should fund everybody to do this. (I.e. It would not mandate such a process but it would give everybody a choice of whether to make use of it.) Once the knowledge exists, it is hard to see what will stop some people making use of it and offering services to – at least – the super-rich.

It is vital to separate two things: a) the basic science of genetics and cognition (which must be allowed to develop), and b) the potential technological applications and their social implications. The latter will rightly make people deeply worried, given our history, and clearly require extremely serious public debate. One of the reasons I wrote my essay was to try to stimulate such debate on the biggest – and potentially most dangerous – scientific issues. By largely ignoring such issues, Westminster, Whitehall, and the political media are wasting the time we have to discuss them so technological breakthroughs will be unnecessarily  shocking when they come.

Hsu’s contribution to this research – and his insight when listening to Tao about how to apply a branch of mathematics to a problem – is also a good example of how the more abstract fields of maths and physics often make contributions to the messier study of biology and society. The famous mathematician von Neumann practically invented some new fields outside maths and made many contributions to others. The physicist-mathematician Freeman Dyson recently made a major contribution to Game Theory which had lain unnoticed for decades until he realised that a piece of maths could be applied to uncover new strategies (Google “Dyson zero determinant strategies” and cf. this good piece: http://www.americanscientist.org/issues/id.16112,y.0,no.,content.true,page.1,css.print/issue.aspx).

However, this also raises a difficult issue. There is a great deal of Hsu’s paper – and the subject of IQ and heritability generally – that I do not have the mathematical skills to understand. This will be true of a large fraction of education researchers in education departments – I would bet a large majority. This problem is similar for many other vital issues (and applies to MPs and their advisers) and requires general work on translating such research into forms that can be explained by the media.

Kathryn Ashbury also did a session on genes and education but I went to a conflicting one with George Church so unfortunately I missed it.

‘Big data’, simulations, and distributed systems [Section 6&7]

The rival to Markram’s Brain Project for mega EU funding was Dirk Helbing (ETH Zurich) and his project for new simulations to aid policy-making. Helbing was also at SciFoo and gave a couple of presentations. I will write separately about this.

Helbing says convincingly: ‘science must become a fifth pillar of democracies, besides legislation, executive, jurisdiction, and the public media’. Many in politics hope that technology will help them control things that now feel out of control. This is unlikely. The amount of data is growing at a faster rate than the power of processing and the complexity of networked systems grows factorially therefore top-down control will become less and less effective.

The alternative? ‘Distributed (self-)control, i.e. bottom-up self-regulation’. E.g. Helbing’s team has invented self-regulating traffic lights driven by traffic flows that can ‘outperform the classical top-down control by a conventional traffic center.’

‘Can we transfer and extend this principle to socio-economic systems? Indeed, we are now developing mechanisms to overcome coordination and cooperation failures, conflicts, and other age-old problems. This can be done with suitably designed social media and sensor networks for real-time measurements, which will eventually weave a Planetary Nervous System. Hence, we can finally realize the dream of self-regulating systems… [S]uitable institutions such as certain social media – combined with suitable reputation systems – can promote other-regarding decision-making. The quick spreading of social media and reputation systems, in fact, indicates the emergence of a superior organizational principle, which creates collective intelligence by harvesting the value of diversity…’

His project’s website is here:

http://www.futurict.eu

I wish MPs and spads in all parties would look at this project and Helbing’s work. It provides technologically viable and theoretically justifiable mechanisms to avoid the current sterile party debates about delivery of services. We must move from Whitehall control to distributed systems…

Science and politics

Unsurprisingly, there was a lot of grumbling about politicians, regulation, Washington gridlock, bureaucracy and so on.

Much of it is clearly justified. Some working in genetics had stories about how the regulations forbid them to tell people about imminently life threatening medical problems they discover. Others were bemoaning the lack of action on asteroid defence and climate change.

Some of these problems are inherently extremely difficult, as I discuss in my essay. On top of this, though, is the problem that many (most?) scientists do not know how to go about changing things.

It was interesting that some very eminent scientists, all much cleverer than ~100% of those in politics [INSERT: better to say ‘all with higher IQ than ~100% of those in politics’], have naive views about how politics works. In group discussions, there was little focused discussion about how they could influence politics better even though it is clearly a subject that they care about very much. (Gershenfeld said that scientists have recently launched a bid to take over various local government functions in Barcelona, which sounds interesting.)

A few times I nearly joined in the discussion but I thought it would disrupt things and distract them. In retrospect, I think this may have been a mistake and I should have spoken up. But also I am not articulate and I worried I would not be able to explain their errors and it would waste their time.

I will blog on this issue separately. A few simple observations…

To get things changed in politics, scientists need mechanisms a) to agree priorities in order to focus their actions on b) roadmaps with specifics. Generalised whining never works. The way to influence politicians is to make it easy for them to fall down certain paths without much thought, and this means having a general set of goals but also a detailed roadmap the politicians can apply, otherwise they will drift by default to the daily fog of chaos and moonlight.

Scientists also need to be prepared to put their heads above the parapet and face controversy. Many comments amounted to ‘why don’t politicians do the obviously rational thing without me having to take a risk of being embroiled in media horrors’. Sorry guys but this is not how it works.

Many academics are entirely focused on their research and do not want to lose time to politics. This is entirely reasonable. But if you won’t get involved you can have little influence other than lending your name to the efforts of others.

Working in the Department for Education, I have experienced in England that very few scientists were prepared to face controversy over the issue of A Levels (exams at 18) and university entry / undergraduate standards even though this problem directly affected their own research area. Many dozens sought me out 2007-14 to complain about existing systems. I can count on the fingers of one hand those who rolled the dice and did things in the public domain that could have caused them problems. I have heard many scientists complain about media reports but when I’ve said – ‘write a blog explaining why they’re wrong’, the answer is almost invariably ‘oh, the VC’s office would go mad’. If they won’t put their heads above the parapet on an issue that directly touches their own subject and career, how much are they likely to achieve in moving political debate in areas outside their own fields?

Provided scientists a) want to avoid controversy and b) are isolated, they cannot have the leverage they want. The way to minimise controversy is to combine in groups – for the evolutionary biologists reading this, think SHOALS! – so that each individual is less exposed. But you will only join a shoal if you agree a common purpose.

I’m going to do a blog on ‘How scientists can learn from Bismarck and Jean Monnet to influence politics‘. Monnet avoided immediate battles for power in favour of ‘preparing the future’ – i.e. having plans in his pocket for when crises hit and politicians were desperate. He created the EEC in this way. In the same way people find it extremely hard to operationalise the lessons of Thucydides or Bismarck, they do not operationalise the lessons from Monnet. It would be interesting if scientists did this in a disciplined way. In some ways, it seems to me vital if we are to avoid various disasters. It is also necessary, however, to expose scientists to the non-scientific factors in play.

Anyway, it would be worth exploring this question: can very high IQ people with certain personality traits (like von Neumann, not like Gödel) learn enough in half a day’s exposure to case studies of successful political action to enable them to change something significant in politics, provided someone else can do most of the admin donkey work? I’m willing to bet the answer is YES. Whether they will then take personal risks by ACTING is another question.

A physicist remarked: ‘we’re bitching about politicians but we can’t even sort out our own field of scientific publishing which is a mess’.

NB. for scientists who haven’t read anything I’ve read before, do not make the mistake of thinking I am defending politicians. If you read other stuff I’ve written you will see that I have made all the criticisms that you have. But that doesn’t mean that scientists cannot do much better than they are at influencing policy.

A few general comments

1. It has puzzled me for over a decade that a) one of the few things the UK still has that is world class is Oxbridge, b) we have the example of Silicon Valley and our own history of post-1945 bungling to compare it with (e.g. how the Pentagon treated von Neumann and how we treated Turing viz the issue of developing computer science), yet c) we persistently fail to develop venture capital-based hubs around Oxbridge on the scale they deserve. As I pottered down University Avenue in Palo Alto looking for a haircut, past venture capital offices that can provide billions in start-up investment, I thought: you’ve made a few half-hearted attempts to persuade people to do more on this, when you get home try again. So I will…

2. It was interesting to see how physicists have core mathematical skills that allow them to grasp fundamentals of other fields without prior study. Watching them reminded me of Mandelbrot’s comment that:

‘It is an extraordinary feature of science that the most diverse, seemingly unrelated, phenomena can be described with the same mathematical tools. The same quadratic equation with which the ancients drew right angles to build their temples can be used today by a banker to calculate the yield to maturity of a new, two-year bond. The same techniques of calculus developed by Newton and Leibniz two centuries ago to study the orbits of Mars and Mercury can be used today by a civil engineer to calculate the maximum stress on a new bridge… But the variety of natural phenomena is boundless while, despite all appearances to the contrary, the number of really distinct mathematical concepts and tools at our disposal is surprisingly small… When we explore the vast realm of natural and human behavior, we find the most useful tools of measurement and calculation are based on surprisingly few basic ideas.’

3. High status people have more confidence in asking basic / fundamental / possibly stupid questions. One can see people thinking ‘I thought that but didn’t say it in case people thought it was stupid and now the famous guy’s said it and everyone thinks he’s profound’. The famous guys don’t worry about looking stupid and they want to get down to fundamentals in fields outside their own.

4. I do not mean this critically but watching some of the participants I was reminded of Freeman Dyson’s comment:

‘I feel it myself, the glitter of nuclear weapons. It is irresistible if you come to them as a scientist. To feel it’s there in your hands. To release the energy that fuels the stars. To let it do your bidding. And to perform these miracles, to lift a million tons of rock into the sky, it is something that gives people an illusion of illimitable power, and it is in some ways responsible for all our troubles, I would say, this is what you might call ‘technical arrogance’ that overcomes people when they see what they can do with their minds.’ 

People talk about rationales for all sorts of things but looking in their eyes the fundamental driver seems to be – am I right, can I do it, do the patterns in my mind reflect something real? People like this are going to do new things if they can and they are cleverer than the regulators. As a community I think it is fair to say that outside odd fields like nuclear weapons research (which is odd because it still requires not only a large collection of highly skilled people but also a lot of money and all sorts of elements that are hard (but not impossible) for a non-state actor to acquire and use without detection), they believe that pushing the barriers of knowledge is right and inevitable. Fifteen years on from the publication by Silicon Valley legend Bill Joy of his famous essay (‘Why the future doesn’t need us’), it is clear that many of the things he feared have proceeded and there remains no coherent government approach or serious international discussion. (I am not suggesting that banning things is generally the way forward.)

5. The only field where there was a group of people openly lobbying for something to be made illegal was the field of autonomous lethal drones. (There is a remorseless logic that means that countermeasures against non-autonomous drones (e.g. GPS-spoofing) incentivises one to make one’s drones autonomous. They can move about waiting to spot someone’s face then destroy them without any need for human input.) However, the discussion confirmed my view that even if this might be a good idea – it is doomed, in the short-term at least. I wonder what is to stop someone sending a drone swarm across the river and bombing Parliament during PMQs. Given it will be possible to deploy autonomous drones anonymously, it seems there may be a new era of assassinations coming, apart from all the other implications of drones. Given one may need a drone swarm to defend against drone swarm, I can’t see them being outlawed any time soon. (Cf. Suarez’s Kill Decision for a great techno-thriller on the subject.)

(Also, I thought that this was an area where those involved in cutting edge issues could benefit from talking to historians. E.g. my understanding is that we filmed the use of anthrax on a Scottish island and delivered the footage to the Nazis with the message that we would anthrax Germany if they used chemical weapons – i.e. the lack of chemical warfare in WWII was a case of successful deterrence, not international law.)

6. A common comment is – ‘technology X [e.g. in vitro fertilisation] was denounced at the time but humans adapt to such changes amazingly fast, so technology Y will be just the same’. This is a reasonable argument in some ways but I cannot help but think that many will think de-extinction, engineered bio-weapons, or human clones are going to be perceived as qualitative changes far beyond things like in vitro fertilisation.

7. Daniel Suarez told me what his next techno-thriller is about but if I put it on my blog he will deploy an autonomous drone with face recognition AI to kill me, so I’m keeping quiet. If you haven’t read Daemon, read it – it’s a rare book that makes you laugh out loud about how clever the plot is.

8. Von Neumann was heavily involved not only in the Manhattan Project but also the birth of the modern computer, the creation of the hydrogen bomb, and nuclear strategy. Before his tragic early death, he wrote a brilliant essay about the political problem of dealing with advanced technology which should be compulsory reading for all politicians aspiring to lead. It summarises the main problems that we face – ‘for progress, there is no cure…’

http://features.blogs.fortune.cnn.com/2013/01/13/can-we-survive-technology/

As I said at the top, any participants please tell me where I went wrong, and thanks for such a wonderful weekend.